3.4.78 \(\int \frac {1}{(7+5 x^2)^2 (4+3 x^2+x^4)^{3/2}} \, dx\) [378]

3.4.78.1 Optimal result
3.4.78.2 Mathematica [C] (verified)
3.4.78.3 Rubi [A] (verified)
3.4.78.4 Maple [C] (verified)
3.4.78.5 Fricas [F]
3.4.78.6 Sympy [F]
3.4.78.7 Maxima [F]
3.4.78.8 Giac [F]
3.4.78.9 Mupad [F(-1)]

3.4.78.1 Optimal result

Integrand size = 24, antiderivative size = 312 \[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\frac {x \left (24+37 x^2\right )}{13552 \sqrt {4+3 x^2+x^4}}-\frac {199 x \sqrt {4+3 x^2+x^4}}{27104 \left (2+x^2\right )}+\frac {625 x \sqrt {4+3 x^2+x^4}}{27104 \left (7+5 x^2\right )}+\frac {575 \sqrt {\frac {5}{77}} \arctan \left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {4+3 x^2+x^4}}\right )}{108416}+\frac {199 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{13552 \sqrt {2} \sqrt {4+3 x^2+x^4}}-\frac {2 \sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{231 \sqrt {4+3 x^2+x^4}}+\frac {9775 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {9}{280},2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{2276736 \sqrt {2} \sqrt {4+3 x^2+x^4}} \]

output
575/8348032*arctan(2/35*x*385^(1/2)/(x^4+3*x^2+4)^(1/2))*385^(1/2)+1/13552 
*x*(37*x^2+24)/(x^4+3*x^2+4)^(1/2)-199/27104*x*(x^4+3*x^2+4)^(1/2)/(x^2+2) 
+625/27104*x*(x^4+3*x^2+4)^(1/2)/(5*x^2+7)+199/27104*(x^2+2)*(cos(2*arctan 
(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticE(sin(2*arc 
tan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)/( 
x^4+3*x^2+4)^(1/2)+9775/4553472*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^( 
1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticPi(sin(2*arctan(1/2*x*2^(1/2))), 
-9/280,1/4*2^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^ 
(1/2)-2/231*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/ 
2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*((x^4+3* 
x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)
 
3.4.78.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.54 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\frac {28 x \left (2836+2633 x^2+995 x^4\right )+i \sqrt {6+2 i \sqrt {7}} \left (7+5 x^2\right ) \sqrt {1-\frac {2 i x^2}{-3 i+\sqrt {7}}} \sqrt {1+\frac {2 i x^2}{3 i+\sqrt {7}}} \left (1393 \left (3-i \sqrt {7}\right ) E\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+7 \left (101+199 i \sqrt {7}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )-1150 \operatorname {EllipticPi}\left (\frac {5}{14} \left (3+i \sqrt {7}\right ),i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )\right )}{758912 \left (7+5 x^2\right ) \sqrt {4+3 x^2+x^4}} \]

input
Integrate[1/((7 + 5*x^2)^2*(4 + 3*x^2 + x^4)^(3/2)),x]
 
output
(28*x*(2836 + 2633*x^2 + 995*x^4) + I*Sqrt[6 + (2*I)*Sqrt[7]]*(7 + 5*x^2)* 
Sqrt[1 - ((2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + Sqrt[7] 
)]*(1393*(3 - I*Sqrt[7])*EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])] 
*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + 7*(101 + (199*I)*Sqrt[7])*Elliptic 
F[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[ 
7])] - 1150*EllipticPi[(5*(3 + I*Sqrt[7]))/14, I*ArcSinh[Sqrt[(-2*I)/(-3*I 
 + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])]))/(758912*(7 + 5*x^2)*Sq 
rt[4 + 3*x^2 + x^4])
 
3.4.78.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1556, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (5 x^2+7\right )^2 \left (x^4+3 x^2+4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1556

\(\displaystyle \int \left (\frac {5 x^2-36}{1936 \left (x^4+3 x^2+4\right )^{3/2}}-\frac {25}{1936 \left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}+\frac {25}{44 \left (5 x^2+7\right )^2 \sqrt {x^4+3 x^2+4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {575 \sqrt {\frac {5}{77}} \arctan \left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {x^4+3 x^2+4}}\right )}{108416}-\frac {2 \sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{231 \sqrt {x^4+3 x^2+4}}+\frac {199 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{13552 \sqrt {2} \sqrt {x^4+3 x^2+4}}+\frac {9775 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticPi}\left (-\frac {9}{280},2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{2276736 \sqrt {2} \sqrt {x^4+3 x^2+4}}-\frac {199 \sqrt {x^4+3 x^2+4} x}{27104 \left (x^2+2\right )}+\frac {625 \sqrt {x^4+3 x^2+4} x}{27104 \left (5 x^2+7\right )}+\frac {\left (37 x^2+24\right ) x}{13552 \sqrt {x^4+3 x^2+4}}\)

input
Int[1/((7 + 5*x^2)^2*(4 + 3*x^2 + x^4)^(3/2)),x]
 
output
(x*(24 + 37*x^2))/(13552*Sqrt[4 + 3*x^2 + x^4]) - (199*x*Sqrt[4 + 3*x^2 + 
x^4])/(27104*(2 + x^2)) + (625*x*Sqrt[4 + 3*x^2 + x^4])/(27104*(7 + 5*x^2) 
) + (575*Sqrt[5/77]*ArcTan[(2*Sqrt[11/35]*x)/Sqrt[4 + 3*x^2 + x^4]])/10841 
6 + (199*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[ 
x/Sqrt[2]], 1/8])/(13552*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]) - (2*Sqrt[2]*(2 + 
x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/ 
8])/(231*Sqrt[4 + 3*x^2 + x^4]) + (9775*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/( 
2 + x^2)^2]*EllipticPi[-9/280, 2*ArcTan[x/Sqrt[2]], 1/8])/(2276736*Sqrt[2] 
*Sqrt[4 + 3*x^2 + x^4])
 

3.4.78.3.1 Defintions of rubi rules used

rule 1556
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> Module[{aa, bb, cc}, Int[ExpandIntegrand[1/Sqrt[aa + bb*x^2 + c 
c*x^4], (d + e*x^2)^q*(aa + bb*x^2 + cc*x^4)^(p + 1/2), x] /. {aa -> a, bb 
-> b, cc -> c}, x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && 
NeQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[q, 0] && IntegerQ[p + 1/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.78.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.64 (sec) , antiderivative size = 351, normalized size of antiderivative = 1.12

method result size
risch \(\frac {x \left (995 x^{4}+2633 x^{2}+2836\right )}{27104 \left (5 x^{2}+7\right ) \sqrt {x^{4}+3 x^{2}+4}}-\frac {349 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{6776 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {199 \sqrt {1-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )-E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{847 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {575 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, \Pi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{189728 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}}\) \(351\)
default \(\frac {625 x \sqrt {x^{4}+3 x^{2}+4}}{27104 \left (5 x^{2}+7\right )}-\frac {2 \left (-\frac {37}{27104} x^{3}-\frac {3}{3388} x \right )}{\sqrt {x^{4}+3 x^{2}+4}}-\frac {349 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{6776 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {199 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{847 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}-\frac {199 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{847 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {575 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, \Pi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{189728 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}}\) \(433\)
elliptic \(\frac {625 x \sqrt {x^{4}+3 x^{2}+4}}{27104 \left (5 x^{2}+7\right )}-\frac {2 \left (-\frac {37}{27104} x^{3}-\frac {3}{3388} x \right )}{\sqrt {x^{4}+3 x^{2}+4}}-\frac {349 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{6776 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}+\frac {199 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{847 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}-\frac {199 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{847 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {575 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, \Pi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{189728 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}}\) \(433\)

input
int(1/(5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/27104*x*(995*x^4+2633*x^2+2836)/(5*x^2+7)/(x^4+3*x^2+4)^(1/2)-349/6776/( 
-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8*I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^ 
(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/ 
2),1/4*(2+6*I*7^(1/2))^(1/2))+199/847/(-6+2*I*7^(1/2))^(1/2)*(1-(-3/8+1/8* 
I*7^(1/2))*x^2)^(1/2)*(1-(-3/8-1/8*I*7^(1/2))*x^2)^(1/2)/(x^4+3*x^2+4)^(1/ 
2)/(3+I*7^(1/2))*(EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2 
))^(1/2))-EllipticE(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2) 
))+575/189728/(-3/8+1/8*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/ 
2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticPi((-3/ 
8+1/8*I*7^(1/2))^(1/2)*x,-5/7/(-3/8+1/8*I*7^(1/2)),(-3/8-1/8*I*7^(1/2))^(1 
/2)/(-3/8+1/8*I*7^(1/2))^(1/2))
 
3.4.78.5 Fricas [F]

\[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac {3}{2}} {\left (5 \, x^{2} + 7\right )}^{2}} \,d x } \]

input
integrate(1/(5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(x^4 + 3*x^2 + 4)/(25*x^12 + 220*x^10 + 894*x^8 + 2084*x^6 + 
2913*x^4 + 2296*x^2 + 784), x)
 
3.4.78.6 Sympy [F]

\[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )\right )^{\frac {3}{2}} \left (5 x^{2} + 7\right )^{2}}\, dx \]

input
integrate(1/(5*x**2+7)**2/(x**4+3*x**2+4)**(3/2),x)
 
output
Integral(1/(((x**2 - x + 2)*(x**2 + x + 2))**(3/2)*(5*x**2 + 7)**2), x)
 
3.4.78.7 Maxima [F]

\[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac {3}{2}} {\left (5 \, x^{2} + 7\right )}^{2}} \,d x } \]

input
integrate(1/(5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="maxima")
 
output
integrate(1/((x^4 + 3*x^2 + 4)^(3/2)*(5*x^2 + 7)^2), x)
 
3.4.78.8 Giac [F]

\[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (x^{4} + 3 \, x^{2} + 4\right )}^{\frac {3}{2}} {\left (5 \, x^{2} + 7\right )}^{2}} \,d x } \]

input
integrate(1/(5*x^2+7)^2/(x^4+3*x^2+4)^(3/2),x, algorithm="giac")
 
output
integrate(1/((x^4 + 3*x^2 + 4)^(3/2)*(5*x^2 + 7)^2), x)
 
3.4.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (7+5 x^2\right )^2 \left (4+3 x^2+x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (5\,x^2+7\right )}^2\,{\left (x^4+3\,x^2+4\right )}^{3/2}} \,d x \]

input
int(1/((5*x^2 + 7)^2*(3*x^2 + x^4 + 4)^(3/2)),x)
 
output
int(1/((5*x^2 + 7)^2*(3*x^2 + x^4 + 4)^(3/2)), x)